Comparative Study Among Lease Square Method, Steepest Descent Method, and Conjugate Gradient Method for Atmopsheric Sounder Data Analysis
نویسنده
چکیده
Comparative study among Least Square Method: LSM, Steepest Descent Method: SDM, and Conjugate Gradient Method: CGM for atmospheric sounder data analysis (estimation of vertical profiles for water vapor) is conducted. Through simulation studies, it is found that CGM shows the best estimation accuracy followed by SDM and LSM. Method dependency on atmospheric models is also clarified. Keywords—nonlinear optimization theory; solution space; atmpspheric sounder
منابع مشابه
A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملAn eigenvalue study on the sufficient descent property of a modified Polak-Ribière-Polyak conjugate gradient method
Based on an eigenvalue analysis, a new proof for the sufficient descent property of the modified Polak-Ribière-Polyak conjugate gradient method proposed by Yu et al. is presented.
متن کاملLinearly Constrained Adaptive Filtering Algorithms Designed Using Control Liapunov Functions
The standard conjugate gradient (CG) method uses orthogonality of the residues to simplify the formulas for the parameters necessary for convergence. In adaptive filtering, the sample-by-sample update of the correlation matrix and the cross-correlation vector causes a loss of the residue orthogonality in a modified online algorithm, which, in turn, results in loss of convergence and an increase...
متن کاملA Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei
In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...
متن کاملA New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013